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ABSTRACT 

Let / )  be the invariant Cauchy Riemann operator and Aim = DmD m 
the corresponding invariant Laplacians on a bounded symmetric domain. 

We calculate the eigenvalues of A~m on spherical functions. In particular 

we prove that  for a symmetric domain of rank two the operators fl41, ~ 3  

generate all invariant differential operators. We also find the eigenvalues 

of the generators introduced by Shimura. 

I n t r o d u c t i o n  

Let 12 = G / K  be a Riemannian symmetric space and T)G(gt) the algebra of all G- 

invariant differential operators on ~. Let g -- ~ + p be the Cartan decomposition 

of 9 = Lie(G) .  It is now well-known (see e.g. [3]) that 7:)o(~) is commutative 

and is isomorphic to the algebra of all Weyl group invariants in the space P(a)  

of all polynomials on a. Here a is a maximal abelian subspace in p. Thus there 

exists a system of r = dim(a) operators that generates all :DG(~). The Laplace- 

Beltrami operator can be chosen to be one of the generators. It is therefore a very 

interesting and natural question to find a geometric construction of a system of 

generators and calculate their eigenvalues. In the present paper we will consider 

the case of Hermitian symmetric spaces. 
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In his paper [14] Shimura constructed a system of positive invariant differential 

operators that generates :Dc(f~) on a classical Hermitian symmetric space ~t. 

His construction is purely algebraic. In the present paper we give a geometric 

construction of the Shimura operators. We study invariant differential operators 

M m  = DmD m constructed via the invariant Cauchy-Riemann o p e r a t o r / )  on 

the space f~ and prove that .]~m is a sum of the Shimura operators. We prove 

further that  for rank two symmetric domains the (negative) operators .~41 and 

./k4 3 form also a system of generators, and thus prove a conjecture of Englis and 

Peetre [1] in that  case. We find yet another system of generators using an idea of 

Rudin [10], whose eigenvalues can be calculated by using Berezin transform. We 

find then the eigenvalues of the generators M1 and ]v13 and of the generators of 

Shimura. 

To explain our main results we take temporarily a Kiihler manifold f~ with 

Kiihler metric hijdzid2 j. Let W be a Hermitian vector bundle over f~. The 

invariant Cauchy-Riemann ope ra to r / )  is introduced in [1], and defined by 

- 0 y ~  

[~(y '%) = hJ~-5-iTzj O~ | ~ ,  

where fae,~ is a section of the bundle W and e~ are local trivializing sections, 

namely they form a basis for the fibre space at each point. Thus b maps sections 

of the bundle W to sections of the bundle T (1,~ | W. Let D = - D *  be its 

formal adjoint and M m  = DmD 'n be the corresponding Laplacians on W. Thus 

(-1)rnA/lm are positive operators. When fl is the unit disk or a Riemann surface 

the operators /3  and Mm are introduced in [8]. It is further proved in [9] that  the 

i t e ra te / )m of L) maps W into the subbundle (|176174 W of (|176174 W.  

Here | stands for the symmetric tensor product. Consider now ~ = G / K  a 

general irreducible bounded symmetric domain in a complex vector space V and 

identify the tangent space at any z E gt with V. The symmetric tensor product 

| is then decomposed under K into irreducible subspaces with signatures 

r n =  ( m l , m 2 , . . . , m r )  with [m[ = m l + m 2 + . . . + m r  = m .  For each i n l e t  

Pm be the orthogonal projection onto the irreducible subspace. We prove in this 

paper for W a homogeneous vector bundle over fl, the operator /3  is the Shimura 

operator E,  and that the operators DmPm Dm are the Shimura Laplacians Mm .  

Thus our Laplacian .h/l~ = DmD rn is a sum of the Shimura Laplacians and we 

have given a geometric construction of the Shimura operators; see Proposition 

3.2 below. 

When W is the trivial line bundle on f~, Shimura [14] proved that the operators 

Mm,  for m being the fundamental representations (1, 0 , . . . ,  0), (1, 1, 0 , . . . ,  0), 
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. . . ,  (1, 1 , . . . ,  1), form a system of generators of the algebra :DG(~ ). On the 

other hand, Englis and Peetre conjecture that the operators A4,~ generate the 

algebra ~c(~t). Our next goal is to find the eigenvalues of the generators in 

the Shimura system and A/tin, and thus to prove (or disprove) the Englis-Peetre 

conjecture. When ~ is of rank two, the Shimura system is then (A/I(1,o), A/l(1,0) 

and A~(1,0) = J~l  = L is the Laplace-Beltrami operator. We are able to find the 

eigenvalues of the operator J~4(1,1) and that of Ad3, and thus prove the Englis- 

Peetre conjecture in that case; see Theorem 6.5 and Theorem 5.6. We proceed 

to explain our method of calculating the eigenvalues. 

The space of holomorphic polynomials P(V) on V, similarly to the symmetric 

tensor above, is decomposed under K into irreducible subspaces pm of signatures 

m = (ml, m2, . . . ,  m~), with multiplicity free. For each m there corresponds a 

K-invariant polynomial Kin(z, z) on V. Using an idea of Rudin [10] we con- 

struct a G-invariant differential operator/Era on ~, which at the origin z = 0 

is the differential operator Km(O, 0). The eigenvalue of Em on the spherical 

function Ch is, roughly speaking, the coefficients in the expansion of Ch(z) in 

terms of Km(z, z), which in turn is Kin(O, c5)r ). Instead of performing this 

differentiation we consider the differentiation Era_O_(0, 0)(h-~r of the product 

h-vCh of the Bergman reproducing kernel h-V(z, z) and the spherical function 

Ch, which is the Clebsch-Gordan coefficient in the tensor product decomposition 

of a Bergman space with its conjugate and is then the Berezin (integral) transform 

of the function Kin(z, z). As a symmetric functions of _X, ~m(0, cS)(h-~r 

form a system of orthogonal hypergeometric polynomials; see [7]. For rank two 

domains we can calculate the polynomial for rn -- (1, 1) by using the result Un- 

terberger and Upmeier [16]; see Proposition 5.2 and Theorem 5.4. We express 

the operator A/t3 and the Shimura operator M(1,1) in terms of the Rudin type 

operator E(1,1) and find their eigenvalues; see Proposition 4.7 and Theorem 6.5. 

There is another motivation of our study of the invariant Cauchy-Riemann 

operator on bounded symmetric domains. When ~ is the unit ball in C ~ and W 

is a line bundle over ~t we proved earlier [9] a product formula expressing A/t,~ as 

a polynomial of A~I. We further proved, by using the product formula, that the 

powers/~m o f / )  are intertwining operators realizing the relative discrete series 

on the line bundle as Bergman spaces of vector-valued functions. We believe 

that further study of those operators on bounded symmetric domains will help 

to understand the relative discrete series in line or vector bundles. 

Along the way of our study we find also some combinatorial formulas involv- 

ing invariant theory of the group K. We believe that those formulas are also 
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interesting in their own right. 

The paper is organized as follows. In w we recall the Jordan triple char- 

acterization of a bounded symmetric domain. In w we recall and prove some 

elementary formulas for the invariant polynomials Kin. Using the polynomials 

Km we introduce in w a system of invariant differential operators Era" We clarify 

further the relation between Aim = D m D  m and the Shimura Laplacians A4m. 

In w we express Ad2 and Jr43 in terms of the operators M1 and t:(1,1). The 

eigenvalues of E ~  are closely related to Berezin transform, and for rank two 

domains we calculate the eigenvalues of E(1,1) in w thus proving that the two 

pairs of operators (]C(1,0), ]CO,I )) and (M1, M3) form two systems of generators. 

In w we find the relation between the Shimura operator A4(1,1) and the operator 

E(1,1) for rank two domains, and thus find its eigenvalues. 

We mention here that some of our results in w167 can be generalized easily 

to line bundles over a general bounded symmetric domain. In particular, it 

is not difficult to prove that the operators t :~ ,  for m being the fundamental 

representations, are also generators. However, we will not pursue it in the present 

paper. The eigenvalues of those operators and the Shimura operators bear some 

remarkable analytical and combinatoric properties. We hope to return to them 

and some applications of our results in a future paper. 

ACKNOWLEDGEMENT: The author would like to thank the University of 

Karlstad for its financial support. He is also grateful to Jaak Peetre and 

Hjalmar Rosengren for their constant encouragement, and to Janathan Arazy 

and Miroslav Engli~ for reading an earlier version of this paper. 

Notation: We list the main symbols used in this paper. 

1. gt, a Kiihler manifold and eventually a bounded symmetric domain G / K  

in a vector space V; 

2. g = ~ + p, the Cartan decomposition of g; 

3. gc = p+ + ~ + p- ,  the Harish-Chandra decomposition of gc; 

4. p + K c p  - C G c, the Harish-Chandra decomposition of GC; 

5. P,  the space of holomorphic polynomials on V; 

6. D(z ,  ~ )v  = { z~v} ,  the Jordan triple product; 

1 Tr D(z,  ~), the normalized Hermitian inner product on V; 7. <z, w> = 

8. B ( z , w )  = I - D ( z , ~ )  + Q(z )Q(~) ,  the Bergman operator, and 

det B(z ,  w) -1 = h(z, w) -p the Bergman reproducing kernel; 

9. :Da(~), the algebra of G-invariant differential operators on gt; 

10. /), the invariant Cauchy-Riemann operator; 
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11. D = -D*,  the formal adjoint of the Cauchy-Riemann operator D; 

12. Aim = DmD '~, the invariant Laplacians, and L = Az[1, the Laplace- 

Beltrami operator; 

13. Kin(z, z), the reproducing kernel of the irreducible subspace of polynomials 

with signature In; 

14. Aim, the Shimura invariant Laplacians; 

15. K:m__, the invariant Laplacians with symbol Kin_ at z = 0; 

16. f14(_~), the eigenvalue of an invariant differential operator J~I on the 

spherical function Ch" 

1. P r e l i m i n a r i e s  

We recall some basic facts about the Jordan triple characterization of bounded 

symmetric domains; see [6]. 

Let fl be an irreducible bounded symmetric domain in a complex n-dimensional 

space V. Let G -- Aut(fl)o be the connected component of the identity in the 

group Aut(fl) of biholomorphic antomorphisms of ~, and let K be the isotropy 

subgroup of G at the point 0. Then, as a Hermitian symmetric space, fl = G/K.  
Let G c be the complexification of G as in [6] realized as the automorphism group 

of the compactification of l'l, and K c be the Lie subgroup with Lie algebra ~. 

The Lie algebra g of G is identified with the Lie algebra aut(fl) of all completely 

integrable holomorphic vector fields on fl, equipped with the Lie product 

[X, Y](z) := X'(z)Y(z) - Yt(z)X(z),  X, Y e aut(fl), z �9 D. 

Let g = ~+p be the Ca r t an  decomposi t ion  of It with respect to the involution 

O(X)(z) := - X ( - z ) .  There exists a quadratic form Q: Y --+ End(V, V) (where 

V is the complex conjugate of V), such that p = {~v; v E V}, where ~v(z) := 

v - 

Let {z~w} be the polarization of the Q(z)~, i.e., 

= Q ( z  + - Q ( z ) o  - 

The space V with the triple product V • V x V is a JB*-triple; see [18]. Define 

D(z, 3) E End(V, V) by D(z, ~)w = {z~w}. The space V carries a K-invariant  

i n n e r  p roduc t  

1 
(1.1) (z, w) := =TrD(z, @), 

P 
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where "Tr" is the trace functional on End(V),  and p - p(f~) is the genus of 

(see (1.7) below). We mention the following property of D(x, fl), 

(1.2) D(x, ~))* = D(y, 5:), 

where D(x, ~)* stands for the Hermitian adjoint of D(x, ~) on V. 

Let B(z,  w) be the Bergman operator on V, 

B(z,  ~) = 1 - D(z, ~) + Q(z)Q(~).  

Identifying the holomorphic tangent space of f~ at a point z with V, the Bergman 

metric of f~ at z is given by 

(1.3) (B(z ,5) - lu ,  v). 

The Bergman kernel of f~ is then, up to a constant, 

(1.4) det(S(z, w) -1) = h(z, w) -v, 

where h(z, w) is an irreducible polynomial in (z, w). For simplicity we write 

h(z) = h(z, z). 
Let us choose and fix a frame {ej}~= 1 of tripotents in V, where r is the rank 

of f~. Then e := el + - "  + er is a m a x i m a l  t r i po t en t .  Let 

$ 

v= Z 
O~j<k<_r 

be the j o in t  Pe i rce  decompos i t i on  of V associated with {ej}~=l, where 

Vj,k = {v E V; D(el, el)v = (Sl,j + 51,k)v, 1 < l < r}, 

for (j, k) r (0, 0), V0,o = {0}, and Vj,j = Cej,  1 <_ j <_ r. The integers 

a :=d imVj ,k  (l <_ j < k _< r); b :=dimV05 ( l _ < j _ < r )  

are independent of the choice of the frame and of 1 _< j < k _< r. The Peirce 

decomposition associated with e is then V = V2 @ V1 with 

(1.6) V2= E Vj ,k  and VI=~'~Vo, j .  
l<_j<_k<_r j-=l 

The g e n u s  p = p(Q) is defined by 

(1.7) p := 1TrD(e, ~) = (r - 1)a + b + 2. 
r 
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Thus (ejlej} = ~TrD(ej ,~ j ) :  @TrD(e,e)= 1. 
Let a = R~  1 + . . .  + R~  r . Then a is a maximal abelian subspace of p with 

basis vectors ~1, ~ = , . . . ,  ~ .  Let {~33}~= 1 C a* be the basis of a* determined by 

/~j(~k) = 28j,k, l < j , k < _ r ,  

and define an ordering on a* via 

/~r >/~r-~ > . . .  >/~1 > o. 

We will write an element A E (a*) as 

j=l 

and identify ~ with (A1, A2,. . . ,  At). 

The posit ive  root  system a+(~,a) consists of {/3j;1 _< j <_ r}, 

{(~j 4- ilk)/2; 1 5_ k < j < r} and {/~j/2; 1 < j _< r}, with multiplicities 1, a 

and 2b, respectively. It follows that p, the ha l f  s u m  of  t h e  posit ive roots,  is 

given by 

(1.8) P =  ~ p j f l j  = ~ b+ 1 + a ( j -  1)./~j. 
- 2 

j = l  j = l  

2. K-invariant polynomials  on bounded  symmetric  domains  

We first recall the decomposition of the polynomial space 73 on V under K.  It 

has been done by Hun [5] for classical domains and by Schmid [12] for general 

domains. See also [2], Theorem 5.4. To state their result we let [3 be a Caftan sub- 

algebra of~ containing the elements D(ej, ej), j = 1, 2 , . . . ,  r. Let ~/1 > 7 2 " "  > % 

be the Harish-Chandra strongly orthogonal roots. Thus %(D(e j ,e j ) )= 25jk. 
The space V = p+ is now of highest weight 71 with highest weight vector el; and 

dual space V' is of lowest weight -71. 

THEOREM 2.1 ([5], [12] and [2]): The space 73 of holomorphic polynomials on V 
decomposes into irreducible subspaces under Ad(K), with multiplicity one as: 

m>0 

Each "pro is of lowest weight -m = - (m171+ '" -+mr%)  with ml >_ .. .  >_ mr >_ O. 

We will hereafter simply call m = (mx ,m2 , . . . ,mr )  (instead of -_In) the 

signature of the space pro. 
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Thc space P can be equipped with the Fock norm, defined by 

(p, q) = p(Oz)q*(z)l~=o, 

where q* is obtained from q by taking the complex conjugate of the coefficicnts 

of q. Let Km(z, w) be the reproducing kernel of pro__ with respect to the Fock 

norm. Thus 

(2.1) e (z'~) = ~ Kin(z, w). 
m 

The following expansion of h(z,w) -~ will be 

see [2]. 

important for our purpose; 

THEOREM 2.2 (Faraut and Koranyi [2], Theorem 3.8): The fimction h(z,w) -v 
has the following expansion, 

(2.2) h-~(z, w) = ~-'~(v)mgm(z, w) 
n l  

for all r, E C, and the convergence is uniform on compact subsets of D x D. Here 

(U)m= V - - 2 ( J - - 1 )  = H v - 2 ( J - 1 ) + k - 1  �9 
j = l  mj  5=1 ~=1 

LEMMA 2.3: The following formula holds, 

(2.3) [w[ 4 = 2K(2,o)(W, w) + 2K(1.U(w, w). 

This follows easily by comparing the expansion (2.1) with 

OO 

m! 
rn----0 

1 (D(w, ~)w, w) has the following de- The K-invariant polynomial LEMMA 2.4: 

composition, 

P r o o f :  

namely 
K-invariant. 

~(D(w, @)w, w) = [wl 4 -  2(1 + 2)K(I,U(w,w). 

The group K acts on V as the isomorphism group of the Jordan triple, 
k{u~w} = kD(u,~)w = D(ku, kv)kw. Thus (D(w,~)w,w) is 

The polynomials Iwl 4 and K(1,1)(w,w) form a basis for the 



Vol. 119, 2000 INVARIANT DIFFERENTIAL OPERATORS 165 

K-invariant polynomials of degree 4. Thus (D(w, w)w, w) can be uniquely writ- 

ten as a linear combination of the two polynomials. To find the coefficients we 

take w = Slel + " .  + 8rer with sj E R. Hence 

T" r 

- l ( D ( w , ~ ) w , w ) = E s  4 = ( E s 2 )  2 - 2 E  2 2sis k 
2 

j----1 j = l  j<k  

(2.4) Iwl 4 2 E  2 2 ---- - -  Sj 8 k. 

j < k  

Now, using Theorem 2.2 for u = -1  we get 

and 

(2.5) 

7" T 

h(w,w) = H ( 1 -  s~) = E(-1).y,+...+~K~l+...+.~(w,w) 
j = l  j=O 

~22s~sk ( a )  ---- (-1)(1,DK(1,1)(w,w) = 1 + Ko,1)(w,w ). 
j < k  

The lemma follows by substituting (2.5) into (2.4). | 

LEMMA 2.5:  

(2.6) 

where 

(2.7) 

and n = dim V. 

For any orthonormal basis {v/} of the Jordan triple V we have 

E TrD(vj, 2)D(z, ~j) = clzt 2, 
J 

e = 2(n + 1) + l (a2  - 22) d i m P  (1'1) 

Proof'. By the same reason as in the previous lemma we know that the left hand 

side of (2.6) is a K-invariant polynomial of z. Being homogeneous of degree 2, it 

is a constant multiple of N 2. To evaluate the constant we consider the Euclidean 
n Laplacian operator 0c5 = Ej=I OvjOvj, acting on the function Tr(Q(z)Q(2)), 

aO(Tr(Q(z)V(~)) = ~ O,,jO~ (Q(z)Q(~')vk, vk) 
j ,k  

= ~'~(Q(z, vj)Q(2, vj)vk, vk) 
j,k 

= E(D(z ,D(Lvk)~ i )v j , vk )  
j ,k  
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(2.8) = E ( v j ,  D(D(z, ~k)vj, ~.)vk) 
j,k 

= E ( v j ,  D(vk, 2)D(z, %)vj) 
j,k 

= E Tr(D(vk, 2)D(z, vk)) 

= elzl 2. 

Hence 

(OO)2(Tr(Q(z)Q(~) ) = cn. 

We calculate the left hand side. The function Tr(Q(z)Q(2)) is K-invariant, and 

to find the left hand side we need to find its decomposition in terms of basis 

functions Izl 4 and K(la)(z,  z). Let z = sxel + s2e2 + "" + srer be the spectral 

decomposition of z with sj E R. Then by [6], Corollary 3.15, 

~ ' ~ 4  a E 2 2  wr(q(z)Q(2)) = sj + sis k 
j=l  j<k 

r 

V" 4 + a E  2 2  ~.~ sj sj sic 
j=l  j<k 

7" 

(2.9) = ( E s ~ ) 2  + ( a -  2) E 2 2 sjs k 
j=l  j<k 

a 
= [Z[ 4 -+-(a-  2)(1 + -~)go,1)(z,z ). 

Now 

(O0)2(N4) = 4n + 4 ( 2 )  = 2 n ( n + l )  

by direct calculation; Lemma 2.3 with w replaced by 0 implies that 

(O0)2Ko,1)(z, z) = (2K0a) (0  , 0) + 2K(2,0)(0, O))Ko,1)(z, z) 

= 2K(1,1)(0 , o)goa)(z ,  z) = 2 dim7 ~0'1). (2.1o) 

Thus (a) c n = 2 n ( n + l ) + 2 ( a - 2 )  1 + ~  dim7 ~0'1) 

= 2n(n + 1) + (a 2 - 2 2 ) dim7 ~0J).  

This gives the formula for the constant c. | 

The constant d i m P  0,1) is calculated in [17]. 
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3. I nva r i an t  C a u c h y - R i e m a n n  o p e r a t o r  /3, Laplac ians  M,~ = Din/) 'n, 

t h e  S h i m u r a  Laplac ians  M m  and  di f ferent ia l  o p e r a t o r s  K:m 

The invariant Cauchy-Riemann "operator for the unit disk in the complex plane 

is introduced by Peetre and Zhang in [8], and studied further in [1] and [9]. 

Let ~ be a K~ihler manifold with the Kiihler metric locally given by the matrix 

(h~j) and W a Hermitian vector bundle over ~}. Let b be the invariant Cauchy- 

Riemann operator on E as defined in [1]. Locally,/3 can be defined as follows. 

Let e(, be a collection of local trivializing sections. If f = ~--~' f~,e~, is any section 

of W, then 
Of" 

JD f = ~ h 3i----=-v~ | e~,. 
025 j,i,a 

Here vj = 0j are the basis vectors for the holomorphic tangent space T O'~ = 
Tz (1,~ o~ (..j. Denote C ~ ( W )  the space of C~ of W. Thus 

D: C~ ~ C~ ~1'~ | W), 

where T (*'~ is the holomorphic tangent bundle over gt. We recall the following 

important intertwining property of/3: 

D(f o r = / ) f  o r 

if r is any biholomorphic mapping of f2 into itself. The action on sections of 

the bundles is the induced action. We denote by (S)mT (1'0) the symmetric tensor 

subbundle of |176 

The following result is proved in [9]. 

LEMMA 3.1: Let fl be a KMfler manifold. Then the iterate D m of the Cauchy- 

Riemann operator D maps C~ into C ~ (((i)mT(1,~ | W). 

We now specialize the above result to an irreducible bounded symmetric do- 

main ~ = G / K  as in w Let W = W~ be the homogeneous vector bundle over f~ 

induced by a representation (V ~, T) of K. The invariant Hermitian inner product 

on the sections of the bundle W~ is given as follows, 

n(T(K(z  : z ) ) f (z ) ,  g(z))dt(z), 

where K ( z  : z) is the KC-part of the element exp(f) exp(z) in the Harish-Chandra 

decomposition of P + K c P  - of G c (see [11]), and 

(3.1) alL(z)- din(z) 
h(z)P 
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is the invariant (K~ihler) measure on f~, and din(z) the Lebesgue measure 

corresponding to the inner product .(1.1). We let D = -D* be the adjoint of 

/9; see [1]. Thus 

(3.2) Dg = h(z)P~-~T(g(z: z ) ) - l ~ . ( h ( z ) - P r ( g ( z :  z))gj) 
J 

ifg = ~_,j vj| is a function with values in V| Here {vj} is an orthonormal 

basis for V. 

The holomorphic tangent space T, (1'~ can be identified with V. The invariant 

Cauchy-Riemann operator is, in view of (1.3), given explicitly by 

(3.3) Dr(z) = B(z, z)Of(z). 

Viewing V as the dual space of 17, namely V = 17', via the bilinear product (1.1) 

the above formula amounts to 

(3.4) L)f(o) = <B(z, z)~f, v>. 

Similarly/~,nf  can be viewed as a function with value in the dual space | 

We wilt use this identification in the next section. 
r~rn,T,(1,0) The symmetric tensor ~ ~, = | is decomposed under K into 

irreducible spaces with signature m__, by Theorem 2.1. We let Pm be the cor- 

responding orthogonal projections onto the irreducible spaces. We form then the 

Laplacians 

.Mm = D'~D '~, .Mm__ = D"*PmD'*. 

Thus we have 

.M,n = ~ ,Mm___. 
I ml=m 

Notice that  ,~41 = L is the Laplace-Beltrami operator. 

In [14] Shimura defined also a family of invariant differential operators on a 

homogeneous vector bundle over ft. We will identify our operator b 'n with the 

Shimura operator Em. For that purpose we observe that the operator/~m has 

the following simple formula at z = 0, 

Dmf(o)  =  ,,)f(o)vim | 

since any degree of differentiation of B(z, z) with respect to v5 vanishes at z -- 0. 

Here the summation is over all (il, i2 , . . . ,  i,,~) 6 {1, 2 , . . . ,  n} m. 
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The argument below is quite standard and we will be very brief. Given a 

V~-valued function f on f~, let Ff  be its lift to the group G, defined by 

Fs(g) = r ( g ( g  : 0 ) ) - V ( g .  0), 

where K(g  : z) is the factor of holomorphy, defined as the KC-part of the ele- 

ment g exp(z) in the Harish-Chandra decomposition p + K c p  - of GC; see [11] for 

details. The function F = Ff  on the group G now transforms according to the 

character T of K.  The Shimura invariant operator E m is then defined as follows. 

For any function F as above E m F  is a (| | V r = ( |  | Vr_valued func- 

tion defined by, for any B1, B2 , . . . ,  B,~ C 12, viewed as a left-invariant differential 

operator, 

EmF(B1,  B2, �9 �9 Bin) = B1B2"'" BmF. 

By pulling back the function E m F  to a function on the domain fl, we get an 

intertwining operator mapping C ~ (W~) to C ~176 ((|176 | Wr). 

On the other hand, the iterate/9"~ satisfies the same intertwining property 

as that of E r. At the point z = 0 of f~, we easily see that  the two opera- 

tors D m and E m are the same, thus they are the same on 12. Furthermore, 

the Shimura Laplacians are defined by ( -1) '~(Em)*PmEm; see [14], Proposi- 

tion 4.1 and Theorem 4.3; also [15], formula (2.20). Namely our Laplacian 

.him__ = ((-D)*)mpmJD m = DmPmD m is the same as that of Shimura. Sum- 

marizing we obtain 

PROPOSITION 3.2: Realizing as operators acting on V~-valued functions on 

we have D "~ E m, M m  DmPmD "~ ( -  ( ) __ and M m  = _ ---- _ ---- 1) m E m *PmE m, -_ 

~-'lml .h4m. 

We .consider now the case of the trivial line bundle. We introduce yet another 

system of invariant differential operators/Era using an idea of Rudin [10], and 

thus give an explicit linear isomorphism between the algebra :Dv(f~) and the 

algebra of all K-invariant polynomials. The eigenvalues of those operators are 

simply the coefficients in the expansion of the spherical function Ch(z) in terms 

of the functions Kin(z, z), and are somewhat easier to calculate. Furthermore, 

they are a special case of a class of orthogonal hypergeometric polynomials in A_; 

see [7]. We will represent the Laplacians .~[2, A/[3 and J~4(1,1 ) in terms of/E m 

and thus find their eigenvalues. 

For each K-invariant polynomial Km__(z, z) we associate to it a differential 

operator/E m by the following, 

~:mf(Z) = g~__(O,O)f(Cz(w))l~,=o, z e ~, 
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for any C~-function f on ~, where Cz E G is so that r = z. One easily 

checks that ]Cm is G-invariant. 

Given a linear differential operator .h/[ = ~c,,~aa,~(z)OaO/3 on l'~ with 

C~~ we let ao(.h4) be its symbol at the origin, 

(3 .6)  = 

Here we use the usual notation that 

0a=01~,02~2. . .0~,  and w a=wla~w2a2.. .w~" 

in terms of coordinates (wt, w2, . . . ,  w,~) of w in V. The symbol at the origin can 

be calculated by the following formula, 

(3 .7)  

where e~ is the function 

(3.8) 

o - o ( M ) ( w )  = 

e w ( z )  = e (z'w>+(~'z>. 

In particular, we observe that 

(3.9) a0(~m__) (w) = Kin(w, w). 

Moreover, for any two invariant differential operators A4 and Af, ,h4 = A/" if 

and only if a0(,~4) = a0(Af). This observation will be used throughout our 

calculations below. 

4. Relations between the operators A4~ and ]~m 

We investigate now the relation between the Laplace operators ~4m and the 

operators ~m__. We will express fl4m as a polynomial of/C m. As is clear from 

(3.7) and (3.9), we need to calculate or(Adrn)(w), and express it in terms of 

gm(w,w). 

LEMMA 4.1: With the definition (3.6) we have 

a0(M2)(w)  = lw{ 4 - 2piwl ~. 

Before plunging into the calculation, we remark that the operator D in (3.2) 

has the following simple form at z = 0, 

(4.1) Df(O) = ~"~ Ojfj(O), 
Y 
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if f = ~ j  vj @ fj, with vj = Oj. Also, we shall use the usual identification of 

tensors with linear transformations. For any finite dimensional Hilbert vector 

space X, the tensor product X | X can be identified with End(f(, X), the space 

of linear operators from f( to X, namely if T C End(f(, X) the corresponding 

tensor is 

(4.2) vj | r j, 

where {vj} is an orthonormal basis of X. In particular, the operator Q(z, w) E 
End(f/, V) will be identified in this way. 

Proo~ We calculate D2/) 2 by definition, using the formula (3.4). Firstly, 

/~)Cw(Z)('U1) = <B(z, Z)W, Vl)ew(z). 

To calculate/)2e,, ,  we note that 

(4.3) 

O~B(z, 2)w = -Or~(D(z, 2)w) + O~(Q(z)Q(2)w) 

= -D(z ,  f~)w + Q(z)Q(2, f~)w 

= -Q(z ,  w)~ + Q(z)D(2, w)@. 

Consequently 

L)2ew (z)('02, Vl) =ew(z)( <B(z, z)w, v2> <B(z , z)w, 'b'l> 
+ <-B(z, z)Q(z, w)f~2, vl)) + Rest 

with the term Rest consisting of terms of homogeneous degree in (z, 2) higher 

than (2, 0) (namely whose degree in z is higher than 2 or in 2 is higher than 0), 
which will vanish in Ad2e,,(0) = D2/)2e,~(0). Hence, using the formula (4.1), 

(4.4) = ] w ]  4 - 2 Tr D(w,@) = ]wl 4 - 2piwl 2, 

which is our lemma. | 

LEMMA 4.2: 

(4.5) 

and 

(4.6) 

We have the following two formulas, 

~r0(L2)(w) -- [w[ 4 - pIwl 2 

ao(L3)(w) = Iw[ 6 - 2(D(w,@)w,w) - 3plw[ 4 + (p2 + c)lwl2, 
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where the constant c is given in Lemma 2.5. 

To simplify the calculation, we note that  the Laplace-Beltrami operator L = 

A/J1 has the following form on a K/ihler manifold, 

i j  

see e.g. [11, (3.21). 

Proof: Using again the formula (1.3) for the metric hi~ , we get 

Le~(z) = e~(z)(B(z, z)w, w) 

and 
[ 

L2e~,(z) z)w, w) 2 
% 

+ ~-~.(B(z,z)w, v j ) ( -  (D(vj,2)w,w)+ (O(vj, z)O(2lw, w}) 
J 

+ (-B(z,  z)Q(z, w)~, w) - ~ ( U ( z ,  z)Q(v i, w)~, vj) 
J 

+ l(B(z,  z)n(w, ~)n(z, ~)z, w) 

+ ~-~(B(z, z)D(w, ~)D(vj, ~)z, vj))  
J 

(say). 

Putting z = 0 we get the first equality (4.5). Notice again that L3e~,(0) = 

L(L2e~,)(O) -- 00(L2ew)(O). We only need to find the terms of homogeneous 

degree (1, 1) in z and 2 in the expansion of the L2e~,(z) near z = 0. In view of 

the preceding formula, 

f~(z) =lwl 4 - plwl 2 - 2(D(z, 2)w, w) - E (w, vj) (D(vj, 2)w, w) 
J 

- (Q(z, w)~J, w) - E ( D ( z ,  ~)Q(vj, w)~, vj) 
J 

+ E ( n ( w ,  2)n(vj, w)z, vj) + Rest 
J 

where the term Rest is a sum of terms of homogeneous degree higher than (1, 1) 

in z and 2. Similarly 

e~(z) = 1 + (w,z) + (z,w) + (w,z)(z,w) + Rest. 
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We find then 

L%~(0) =lwl 6 - 2(D(w, ~)w, w> - 31wl 2 TrD(w, w) 

J J 

The last term is evaluated by Lemma 2.5. To evaluate the second last term, we 

calculate 

J J 

i 
= T r D ( x , r  

=p(~,y), 

by (1.2) and (1.1). That is ~-~j D(vj,  ~j) = pI. We get then 

E Tr (D(vj ,  9j)D(w, @)) = p Tr D(w, (v) = p2 {w, w). 
J 

This completes the proof. | 

Comparing a0(L 2) and ~0(,~42) we get 

PROPOSITION 4.3: The following formula holds: 

.M2 = L ~ - pL = L(L  - p). 

Remark 4.4: It has been proved in [11 that generally, when ~ is a K~ihler-Einstein 
manifold, that is when the Ricci tensor is a constant multiple (say k) of the metric 
tensor, A,42 = L(L  - k). For a bounded symmetric domain ~, k = p, the genus 
of f~, our formula thus coincides with theirs. For the tube domain of rank two 

(i.e., the Lie ball), the above formula is proved in [14], (6.13a). 

Observe that 

d~42 = D D D D  ~- DID, DID + D D D D  = DID, DID + L 2. 

We have the following formula: 
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COROLLARY 4.5: The following formula holds: 

D[D,D]D = -pL.  

It is worth noticing that the above equality can also be written as DID, D]D = 

D ( - p ) D ;  however [D, D] (on the holomorphic tangent bundle) is not the constant 
matrix -p .  

LEMMA 4.6: The symbol of the operator A43 at z = 0 is given by 

(4.7) ao(M3)(w) = ]w[ 6 - 3<D(w, @)w, w> - 6plwl 4 + (6p 2 + 3c)lwl 2, 

where c is the constant in (2. 7). 

Proo~ We calculate first/)3e,~. A straightforward calculation gives 

=e~(z) (<w, v ~ > ( w .  ~ - D(z, ~)~ | ~ - ~ .  D(z, ~)w, v~ | Vl)  

- <Q(z, ~)~3, ~><~, v~) - <~, ~><Q(z, ~)~3, ~i) 
- (w, v3>(Q(z, w)~2, Vl) + (D(z, v3)Q(z, w)~2, vl) 

A- (Q(z)D(v3, w)v2, v l ) )  A- Rest. 

Here the term Rest, as before, consists of terms that will vanish in .hd3ew(0). We 

find now 

M3e,o(0) =]wl 6 - 3(D(w, w)w, if2) - 6piT] 4 + 6p2lwl 2 
n 

+ 3 E TrD(vj, ffJ)D(w, ~j)IT[ 2. 
j = l  

The last term is then evaluated in Lemma 2.5. | 

We have now a formula expressing M3 as a polynomial of L and 1C(1,1 ). 

PROPOSITION 4.7: The operator J~3 is a polynomial of L = M1 and K:(1,1). 

More precisely 

a 
M3 = L3 - ( 3 p +  2)L ~ + ( v  ~ - v +  2e)L + 25(1 + ~)  ~(1,1). 

Proof: The formulas (4.6) and (4.7) imply that 

a ( M 3  - L3)(w) 
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= - (D(w, ff))w, w) - 3plwl 4 -4- 5p21wl 2 + 2clw[ 2 
a 

= -  21wl 4 + 22(1 + ~ ) K ( 1 , 1 ) ( w , w ) -  3plwl 4 + 5p21wl 2 + 2clwl 2 

a 
= - (3p+  2)(Iwl a - plwl 2) + (2p 2 - 2 p +  2c)lwl 2 + 22(1 + -~)Ko,1) (w,w ) 

( ~  : - (3p + 2)O'o(L2)(w) + (2p 2 - 2p + 2c)lwl 2 + 22 1 + ~ K(1,1)(w, w), 

where we use Lemma 2.4 in the second equality and (4.5) in the last one. This 

proves the proposition. | 

Remark 4.8: When 12 is the unit ball in L m, the term 1C(1,1) will not appear, 

a n d p = n + l , c = 2 ( n + l ) = 2 p .  Thus 

-'/~3 : L3 - (3p + 2)L 2 + (2p 2 + 2p)L = L(L  - p)(L - 2(p + 1)). 

A general product formula for .M,~ has been proved in [1], and for .M,~ on line 

bundles in [9]. 

5. E igenva lues  o f  t h e  operators/Cm__ and 2d,n 

We let Ch(z) be the spherical function on ~2 as defined in [3], Chapter IV. Let 

L = D D  be the Laplace-Beltrami operator on ~. We have L = M(1,0) and, for 
r _A = )-~j=l Ajflj, Ch is a eigenfunction of L with eigenvalue 

r r 

j----1 j - - 1  

since f~j has norm 2. (Here the factor �88 appears because of the usual convention 

with the complex differentiation, 0~ = �89 - JOy) for z = x + iy.) 

In this section we will calculate the eigenvalues of the invariant differential 

operator/C(1,1 ). For this purpose we will use the the Berezin transform. The ap- 

plication of Berezin transform to invariant differential operators has been studied 

in our early papers [9], [7]. We notice that the eigenvalues K:m(A) of/Cm on the 

spherical functions are given by 

( 5 . 2 )  = 

Our idea is that, instead of calculating (5.2), we calculate 

- u  Z 
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which, roughly speaking, is an integral of the spherical function Cx_ against the 
function Kin(z, z) and can be evaluated for certain m using the Berezin trans- 
form. 

For v > p - 1 the Berezin transform B~ is defined by 

h(z'z)~h(w'w)~ d 
B.f(z) = c~ fD ~ / ( w )  ,(w), 

where dr(w) is the invariant measure (3.1), and 

r 

(/D ) - 1 =  1 r I - I j= lF(V-~(J-n  a .1)) 
Cv := h(z, z)~dt(z) 7rn I-Ij=l F(v - 7 - ~(3 - 1)) 

is the normalizing constant. The operator B~ defines an invariant bounded self- 

adjoint operator on L2(fl) with the invariant measure dr(z); see [16]. The spectral 

symbol by(A_) of B ,  is given by the eigenvalue of B~ on Cx_. More exactly, Unter- 

berger and Upmeier [16] proved that the integral 

(5.3) = fo 
h(z, z)"h(w, W) v 
~ r  

is absolutely convergent for A in an open domain of (a*) c and equals bv(h)r 
and calculated the symbol b~ (,k). 

THEOREM 5.1 (Unterberger and Upmeier [16], Proposition 3.39): The spectral 
symbol of the Berezin transform is given by 

b~(~) = 1~I r(i~j + ~,- ~)r(-i~_____ j__+_ ~ -___~_~) 
~=1 r(oj  + . -  ~ - ~ ) r ( - p j  + ~ - P-~) " 

Unless otherwise mentioned we will assume from now on that f~ is an irreducible 

bounded symmetric domain of rank two. 

The following differentiation formula holds: 

1 
(-1)0,1) 2 +A2)((u_P -2 + A22) _ (u)0,1)2 

Proof: We take ~ in an open domain so that the integral (5.3) is absolutely 

convergent. (Such an open domain exists; see [16].) Notice that the equality 

b,,(~)r ) = BvCh(z) can also be written as 

b~(~)h(z)-~r = c~ [ 
h(w, W) v 

h(z,-~)~ h-if, z)~r JD 
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Let the operator Era(0, 0) act on the equality at z = 0; we get 

(5.4) 

bv(__~)~m__ (h-~r  (0) 
=b~,(~__)K~__(O, 0) (h-'r (0) 

=c~ f K~(O~,8~) (h(z ' 1 _ w)~,h(w, z) v) (O)h(w, w)~'r 

using Theorem 2.2 we get 

Km(Oz'OZ) (h(z,w)lh(w,z)V) (0) = (v)2Km(w, w). 

Therefore the right hand side of the preceding formula (5.4) can be written as 

the Berezin transform of Kin(w, w)r ) at z = 0, namely, 

c~,(V)2m__ [ Kin(w, w)r = (v)~B~ (gmch)(0),  
J D  

or  

(5.5) b~,(~_)Km(O, O)(h-vCh)(0)= (V)2m__B~,(KmCh)(O). 

n 
Let first m = (1,0). Then g(1,o)(O,O) = ~~j=lOjSj is the Euclidean 

Laplacian. We calculate the right hand side in (5.5). First we notice that 

Ojh( z)-V (O) = Ojh( z, z)-~(0) = 0 

and 

K(1,o)(0,  8 ) ( h - V ) ( 0 )  = n(/])(1,0) 

by the expansion of h(z, z) -v in Theorem 2.2. Thus 

K(1,o)(O, cS)(h-VCh)(0) = K(1,o)(O, (0)(h-V)(0) + K(1,o)(O, 0)r 

= n(~)(1,o) + t:(1,o)(h). 

The second term is the eigenvalue of the Laplacian operator, namely 

-�88 + (p, p)). The formula (5.5) can be rewritten as 

(5.6) : (o, o))) �9 

We now calculate the right hand side in (5.5) for m = (1, 1). The expansion 

(2.2) for v = - 1  implies 

h(w, w) = 1 - Ko,o)(W, w) + (-1)(1,1)K(1,1)(w, w), 
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or  

(-1)O,i)K(i , i )(w , w) = h(w, w) - 1 + K(i,o)(W, w). 

Therefore 

(-1)(1,1iB~(K(i,1)r = Bv(hCh)(O ) - B~(Ch)(0 ) + B~,(K(1,o)Ch)(O). 

The first term can be evaluated by Theorem 5.1. Indeed, 

B~,(hCh)(O ) = cv B~+i(r ) = c~ b~+i()~) 
Cv+l Cv+I 

2 ~)2_~). _ c~ h / ~ l - l j = l ( ( " -  2 + 
(5.7) cZ v~,._.,~-r--,-:-- ~ ) ~  p~), 

v+i llj=ll,(,v - 

and the second term B,,(r ) = b,(__A), again by Theorem 5.1. The third term 

is evaluated by (5.6). Summing up we have obtained 

b~(h)~:(,,1) (r 
1 { cv 1- I~=l ( (v-P@) 2+A2) 

=(u)~i'i)b~'(--A) (-1)O,i) cv+i l']~=i((u - P-~2-~i) 2 - p2) - 1 

+ -~ [ n u -  ~((A-,A-) + (O,O))] }. 

Multiplying both sides by b,(A) - i ,  we get 

(~,)~1,,) { c~ [ I~=l ( (v-  ,-~)~ + ~.) 
/C(i,i) (h-~r  - ( -1 ) ( i ,1 ) .  c~.+i l"[~=l((u - ~ ! ) 2  +p2)  - 1 

+ ~ [~u- ~(-~,-~) - ~(~,~)] }, 
which, after simplifying, is our result. | 

Remark 5.3: The polynomial in the right hand side of the above proposition is 

one of a system of hypergeometric polynomials in _A orthogonal with respect to 

the measure [c(h)l-2b,(h); here c(_A) is the narish-Chandra c-function; see [7]. 

The right hand side in the above Proposition is a polynomial in u. Taking 

u = 0 we have now 

THEOREM 5.4: The eigenvalue of the differential operator lC(1,i) is 

IC(1,1)(h) 

, - ( ~ , + ~ + d + d ) +  + + ~  �9 
l + ~ a  
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We notice that  the symmetric polynomials/C(13) (_~) and/C(1,0) (_A) generate the 
2 2 elementary symmetric polynomials A 2 + A 2 and AIA 2. We get now immediately 

COROLLARY 5.5: The operators IC(~,o) and IC(1,1) form a system of generators 
for the algebra :Dc(f]). 

From Proposition 4.7 one can calculate the eigenvalue of A43. Notice that the 

operator/C(1,~) appears in . /~3 linearly. We have then the following result, which 

proves a conjecture of Englis and Peetre [1] for rank two domains. 

THEOREM 5.6: The operators .h/J1 and .M3 form a system of algebraically 
independent generators of the algebra 1:)c (12). 

The above theorem can be proved somewhat more easily, without the exact 

calculation in Proposition 4.7 and Theorem 5.4. We observe that ~'i3 and L 3 

have the same leading term. Thus we need only to find the 4-th order term 

in a0(.h/[3) - o'0(L 3) and prove that it can be written as alw] 4 4- ]~K(1,1)(w,w) 
for some non-zero constant j3. We remark further that, among the bounded 

symmetric domains, there are two exceptional domains with rank 2 and 3 for 

which the algebra/3a(l]) is larger than the image of the center of the universal 

enveloping algebra [4]. The above theorem thus gives a geometric construction 

of generators of the algebra/)c(f~). It would be interesting to understand if the 

conjecture is true for rank 3 domains. 

6. T h e  e igenvalue  of  t he  S h i m u r a  o p e r a t o r  J~4(1,1) 

We calculate now the eigenvalues of the Shimura operator .h4(1,1) = D2p(1,1)D 2 
by expressing it in terms of the operator/C(1j). 

PROPOSITION 6.1: The symbol of the operator .h'l(l,1) is 

2(1 + b)alwl2" 
ao(~A(1,1)) = 2K(1,1)(w,w) t- 2 • a 

Proo~ It follows from the proof of Lemma 4.1 that 

(6.1) ao(JVl(1,1))(w) = D2p(1,1)(w | we(Z'~))lz=0 - D2p(1,1)(q(z, w)e(~"~))lz=o. 

Clearly, by K-invariance 

D2P(,,1) (w | we (r Iz=o : C1K(1,1)(w, w) 

for some constant C1. To find the constant, we observe that similarly 

D2 P(2,o)(w | we <~'~)) I~=o = C~K(2,o)( w, w); 
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using D 2 = D2P(1,1) + D2P(2,0) we get 

]w] 4 = D 2 (w | we <z'w)) [z=0 = c1g(1,1)(w, w) § c 2 g ( 2 , 0 ) ( w  , W). 

However, Km form a basis for the K-invariant polynomials; by Lemma 2.3 we 

get C1 -- C2 = 2. To find the second term in (6.1) we need the following 

LEMMA 6.2: The following differentiation formula holds: 

(6.2) D2p(1,1)(Q(z,w)e(~,~>)i~=o_ 2(l+b)atwt2"  
2 + a  

Accepting temporarily the lemma we get then the Proposition. | 

We now prove the lemma. 

Proo~ Clearly 

(6.3) D2P(1,1) (Q(z, w)e (~'w) ) [~=0 = Clw]2 

for some constant C. To find the constant C we let w = el be a minimal tripotent. 

Thus tw] 2 = 1. We first calculate P(1,I)Q(z, el). Let V = V2(el) @ V1 (el) @ Vo (el) 

be the Peirce decomposition, with V2(el) = Cel. We observe that P(1,1)el| = 0 
since el | el is a highest weight vector of weight 271 = (2 0). By the Peirce 

product rule {Vi(el)Vj(el)Vk(el)} C V~-j+k we have, as a tensor in U @ V, 

Q(el, el) = 2el ~ e I § ~ wj ~ wj 

J 

where {wj} is an orthonormal basis of Vl(el), each of which can he chosen 

as a minimal tripotent. P(1,1)el | el = 0 implies P(1,1)wj | wj = 0 since K 

acts transitively on minimal tripotents and P(1,1) is K-equivariant. Therefore 

P(t,1)Q(z, el) -- 0 if z E V2(el). Now if z E Vl(el) the tensor Q(z, el) is of weight 

3'1 § 9'2 3'1 - 3'2 
3'i + - -  - 3'1 + ~/2 + - -  

2 2 

which is higher than ~'1 § = (1, 1), thus again P(1,1)Q(z, el) -- 0. We only need 

to consider z E V0(el). 

We start to calculate P(1,1)Q(z, el). Choose an orthonormal basis v l , . . . ,  Vl+b 
of Vo(el) (orthogonal with respect to the Hermitian metric (., .), not as an ortho- 

gonal frame of the Jordan triple V0) consisting of minimal tripotents. We have 

l~-b 

Q(z, el) = ~-~(z, vj)Q(vj, el), 
j = l  
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and the constant C in (6.3) is given by 

(6.4) 
1+b 

j= l  

We fix vj = e2 a minimal tripotent in Vo(el). We claim that 

( 6 . 5 )  el)) x--o = -  2 + a  

2 a  Thus the constant C is (I + b)2--~, which is our lemma. We now prove (6.5). 

We will find P(1,1)Q(e2, el) in terms of the highest weight vector in the subspace 

with signature (1, 1) of the symmetric tensor | Let 

v = (vii �9 y~2 �9 v12) �9 (y01 �9 y02) 

with V 0 = Vj~, be the joint Peirce decomposition of V. Consequently we get the 

Peirce decomposition with respect to e = el + e2, 

V = g2(e) ~ gl ,  g2(e) : Vii ~ V22 ~) g12, gl(e)  = V01 ~ go2. 

Using the Peirce product rule 

{V~V~kVkz} C ~z 

and that  all other triple products are 0, we get Q(e2, el) c V2(e) O V2(e). Now 

V2 (e) is a Jordan algebra of rank 2 and thus is equivalent to the Jordan triple of 

type IV; see [6], 4.11. We can thus identify V2(e) with the type IV Jordan triple 
C 2+a and the triple product on C 2+a is given by 

D(z,~)u = Q(z,u)O = (z. ~)u+ (u. ~ ) z -  2(z-u)~. 

Here z - u  is the quadratic form ~ j  zjuj. We can assume that el = �89 and 
1 e2 = ~(1 , - i ) .  Let uj , j  = 1 , 2 , . . . , a  be an orthonormal basis of V12. Thus 

Q(e2, el)Uj = -u j  and 
a 

Q(e2, el) = - ~ ~j | uj. 
j= l  

The vectors uj are all of weight �89 + "Y2), thus Poj)Q(el, e2) is a constant 

multiple of the highest weight vector 

q = el | e2 + e2 |  + E u j  |  
j=l 



182 G. ZHANG Isr. J. Math. 

in the subspace with signature (1, 1). By elementary calculation we find the 

decomposition 

a 

i a 
2 a 

E uj @ uJ - ~ a q  + ~ j : l  
j = l  

a ) 2 + a  ( e l | 1 7 4  , 

where the second vector is orthogonal to q, namely is in (2, 0)-space. Hence 

a 
P(1,1)Q(e2,el) - 2 +---aq" 

The left hand side of (6.5) is now 

a 
D2(e<Z'c') (z'e2>Po'l)Q(e2'el))]z=~ - 2 + a D2(e(z'~l) (z'e2)q))lz=~ 

2a 
2 + a  

This proves (6.5) and thus the lemma. | 

We obtain consequently a formula expressing the Shimura operator ,~4(1,1) in 

terms of/(:(1,0). 

PROPOSITION 6.3: The following formula holds, 

2a(1 + b) 
J~(1,1) = 2)~(1,1) + a + ~ K ; ( l ' ~  

w i t h  ~(1,o) = L. 

Remark 6.4: Recall Proposition 4.7. We can further write -~3 a8 a polynomial 

of the operator L and AdO,l) , in view of the above Proposition: 

.A43 = L 3 - (3p + 2)L 2 + (2p 2 - 2p + 2c - 2a(1 + b))L + (2 + a).M(1,1). 

Consider the case of a tube domain or rank two, i.e. the Lie ball. The above 

formula can be rewritten as 

.M3 = L(L - (2n + 2))(L - n) + nM(1,1). 

This coincides with Shimura [14] (see the third formula in Proposition 6.4 there). 

Using Theorem 5.4 we further find the eigenvalues of the Shimura operator. 
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THEOREM 6.5: The eigenvalue of the Shimura Laplacian 2r is 

M(1,1)(h) 

) - 1 + ~  (5) (-A1- A2-p2-p2)+(( )2+A2)((  )2+A2) 

+ 2 a ( l + b ) ( ( _ A  2 _ A ~ -  p ~ -  p2) 
a + 2  

_ ( l + 2 b + b 2 + 4 A ~ )  ( 1 + 2 b + b 2 + 4 A ~ )  

4 ( 2 + a )  

Note that the eigenvalue of .t~4(1,1)(_~), after all, has a nice product formula. 

In a subsequent paper we will give a different proof of the formula. 

We specialize our result for a certain special value of _A. Recall Siegel domain 

realization of G / K .  Let V = V2(e) @ Vl(e) be the Peirce decomposition of V 

with respect to the maximal tripotent e as in (1.6). The domain ~2 = G / K  can 

also be realized as 

1 
{(Z2, Zl) e V2(e)~ Vl(e); ~(z2) - ~{Zl~'le} > 0}. 

Here ~z2 stands for the imaginary part of z2 E V2 in a splitting of V2, and y > 0 
when y is an element in the cone of positive elements in a real Jordan algebra; 

see [6], w for the precise formulation. Let de t (x )be  the determinant function 

on the Jordan algebra V2(e). The function det(~(z2) - l{ZlZle})S, for s e C, is 

then an eigenfunction of the algebra ~Pc(gt). In fact, it is the Harish-Chandra 

eh-function 
1 8 

det(~(z2) - ~{z121e}) = eh(z) 

with 

h = - i ( s Z l  + sZ2) - p_p_. 

See [16]. Substituting the A_ into Theorem 6.5, we get now 

COROLLARY 6.6: When f~ = G / K  is realized as a Siege/domain the function 

det(~z2 - {Zls s with s e C is an eigenfunction of the Shimura Laplacian 

]t~(1,1 ) with eigenvalue 

( a -  2 s ) ( 2 + a +  2 b -  2s)(1 + b -  s)s 

2 + a  
a a 4 

- a + 2  s - 2 / 

When ft is a tube domain of complex and symmetric complex square matrix 

domains, the above result is proved by Shimura in [13], Proposition 11.12. Note 
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that our .s differs by a constant from that of Shimura there, as we here 

are using a different normalization. (The coefficient of the highest degree of our 

differential operator at the origin is, according to Proposition 6.1 and formula 

(2.5), 
1 4 

2 - -  
1 +  9 a + 2 '  

thus the coefficient in the above formula, whereas the operator in [13] (see formula 

(11.21b)) has 1 as its coefficient of the highest degree.) 
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